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A multi-element arbitrary polynomial chaos (ME-aPC) scheme is introduced for uncertainty quantification (UQ) in sensors.
Similarly to the classical arbitrary polynomial chaos (aPC), the ME-aPC scheme is most usable in data-driven applications, in
which the input uncertainty is represented numerically by raw data samples. In sensors, the input samples are usually obtained by
real-time measurements. With the several examples considered in this paper, the proposed scheme is shown to have better numerical
stability than the classical aPC, without compromising the accuracy of the solutions.
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I. INTRODUCTION

Studies of uncertainty quantification (UQ) play a key role
in designing sensors that operate effectively in harsh and
hostile environments. A common approach to performing such
studies is to consider a stochastic model, in which inputs and
outputs of a sensor are assumed as random variables. In this
approach, the goal is to estimate the output probability density
function (PDF) based on the input variability. For a moderate
number of input variables, the generalized polynomial chaos
(gPC) [1] is considered a fast and accurate method to perform
this task. However, a key challenge in the classical gPC
method is that input distributions are required to be fully
known. In sensors, this might not be feasible as variation
in inputs is usually represented in terms of limited data sets
obtained from real-time measurements, and fitting the data
with parametric distributions may introduce undesirable errors.
In [2], Oladyshkin and Nowak addressed the aforementioned
challenge by constructing a polynomial chaos (PC) scheme,
based on the statistical moments rather than the probability
distributions. This scheme can be referred to as arbitrary
polynomial chaos (aPC). Yet, the aPC scheme may become
unstable when high-degree polynomials are required to achieve
accurate solutions [3]. The objective of the present paper is
to show that by combining the aPC method with the multi-
element (ME) technique [4], it is possible to reduce the degree
of polynomials without compromising the accuracy of the
outcomes. In particular, we apply and validate the proposed
approach with model problems addressing several types of
sensors.

II. MATHEMATICAL FRAMEWORK FOR DATA-DRIVEN
APPLICATIONS

A. Non-intrusive polynomial chaos

We consider a probabilistic approach for uncertainty quan-
tification, in which an uncertain input parameter x is related
to an output metric y by a stochastic model y = g(x).
Both x and y are random variables with unknown probability
density functions. x is represented in terms of M sample

points (i.e, x = {x1, x2, . . . , xM}) with a probability space
[a, b] ' [min (xi),max (xi)]1≤i≤M . y is a variable that we
intend to approximate. In polynomial chaos approach, this is
achieved by expressing the stochastic model g(x) in terms of
orthonormal polynomials Φi(x) through the expansion

y = g(x) =

N∑
i=0

ciΦi(x) (1)

where N refers to the order of the expansion. Coefficients ci
are determined via N + 1 collocation points

Φ0(x0) Φ1(x0) · · · ΦN (x0)
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. . .
...

Φ0(xN ) Φ1(xN ) · · · ΦN (xN )


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...
cN

 =
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y(x0)
y(x1)
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y(xN )

 (2)

The expected value and the variance of y are given as

µy = c0, σ2
y =

N∑
i=1

c2i (3)

B. Orthonormal Polynomials for an Arbitrary Distribution

The next step is to find the orthonormal polynomial ba-
sis {Φ1, ...,ΦN}. First we introduce orthogonal polynomials
Pk(x) which satisfy

Pk(x) =

k∑
i=0

pk,ix
i, k = 1, ..., N (4)

where the subscript k refers to the order of the polynomial
and pk,i are the polynomial coefficients. Note that the poly-
nomials Pk(x) may not be orthonormal. According to [2], the
coefficients pk,i can be determined via the matrix

µ0 µ1 · · · µk

µ1 µ2 · · · µk+1

...
...

. . .
...

µk−1 µk · · · µ2k−1
0 0 · · · 1


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pk,0
pk,1

...
pk,k

 =


0
0
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0
1

 (5)



where µi refers to the ith statistical moment. It satisfies the
relation

µi =
1

M

M∑
j=1

xij (6)

Again, M refers to the size of the sample set, while xj’s are
the sample points. Once the polynomials in (4) are determined,
the orthonormal basis Φk(x) can then be obtained by the
expression

Φk(x) =
Pk(x)

||Pk||
(7)

with

||Pk||2 =
∑
|s|=2

(
2

s

)
ps
kµrk (8)

where

s = {s0, s1, . . . , sk}, ps
k =

k∏
t=0

pstt,k, µrk =

k∏
t=0

tst

The multi-index s refers to all combinations of si such that
s0 + s1 + . . .+ sk = 2. Equation (8) requires the availability
of the first 2k + 1 moments.

C. Multi-Element Decomposition

Some model problems involve the evaluation of high-degree
polynomials in order to achieve the required accuracies. This
can be challenging as the matrix in (5) might become ill-
conditioned in such cases [3]. Alternatively, the multi-element
approach [4] can be used to reach the attempted accuracies still
by using relatively low-degree polynomials. In this approach,
the random space is decomposed into d non-overlapping in-
tervals. Then the non-intrusive polynomial chaos (see Section
II-A) is applied locally on each element. Consequently, the
global mean µy and variance σ2

y are computed as

µy =

d∑
l=1

µy,lhl, σ2
y =

d∑
l=1

[σ2
y,l + (µy,l − µy)2]hl (9)

where µy,l and σy,l are the local mean and variance on element
l, respectively. hl = Ml/M , with Ml being the number of
samples in element l.

D. Error Estimation

The output measures defined in (3) and (9) vary with dif-
ferent realizations of the same sample size. Let ZApprox refer
to an output measure obtained from distribution sampling. For
error evaluation, we take n realizations of ZApprox(n), and
compute its mean µZApprox

and standard deviation σZApprox
.

Typically, ZApprox(n) is considered to follow a normal distri-
bution. Based on that and on the 3-sigma rule, the maximum
relative error can be approximated as

ε '
max{‖(µZApprox

± 3σZApprox
)− ZExact‖}

‖ZExact‖
(10)

with ZExact computed by the exact distribution.

III. NUMERICAL EXAMPLES

A. Capacitive Moisture Sensor
A basic capacitive moisture sensor consists of dielectric

substrate with thickness d and permittivity ε, inserted between
two conducting plates each of area A. The capacitance of the
sensor is given by relation C = εA/d, where ε satisfies

ε =

(
1 +

1.5826

106T

(
Pma +

0.36Pws

T

)
RH

)
ε0 (11)

with ε0 being the permittivity of free-space, T is the absolute
temperature, and RH is the relative humidity. Pma and Pws

refer to the pressure of moist air and saturated water vapor,
respectively. They are given by the expressions

Pma = 133.322e20.386−5132/T

Pws = 133.322× 100.66077+7.5(T−237.15)/T

The goal here is to estimate the sensor capacitance C given
that the operating temperature T is under uncertainty. T is
considered to follow normal distribution with expected value
µT = 300 K and standard deviation σT = 0.2µT K. The
other inputs are given as: d = 1 mm, A = 100 mm2,
and RH = 0.4. Figure 1 shows the maximum relative
error of the expected value and the standard deviation of the
sensor capacitance vs. number of T samples, obtained with
aPC and ME-aPC schemes. In ME-aPC the input domain is
decomposed into 8 elements. For the expected values, it is
clear that the results obtained with aPC and ME-aPC are in
good agreement, even when the order of the polynomial chaos
expansion is the same for both schemes (i.e. N = 2). However,
for the standard deviation, the results show that the same rate
of convergence obtained by aPC at N = 4 is attained by
ME-aPC with N = 2. In other words, by using the ME-aPC
approach the degree of the polynomials is reduced by 2, while
the accuracy of the output remains unchanged.

(a) Expected value (b) Standard deviation

Fig. 1: Convergence rate of expected value and standard
deviation of C vs. number of T samples, with µT = 300
K and σT = 0.2µT K.
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